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Summary. Two parallel direct integral transformation algorithms are presented. 
Specific attention is directed to producing transformed integrals containing at least 
two "active orbital" indices. The number of active orbitals is typically much less 
than the total number of molecular orbitals reflecting the requirements of a wide 
range of correlated electronic structure methods. Sample direct second-order 
Moller-Plesset theory calculations are reported. For situations where multipassing 
of the integrals is required, superlinear speedup is obtained by exploiting the 
increase in global memory. As a consequence, for morphine in a 6-31G basis, 
a speedup of over 25 is observed in scaling from 32 to 512 processors. 
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1 Introduction 

The transformation of two-electron integrals from the atomic orbital (AO) to 
molecular orbital (MO) representation is a fundamental requirement of dynam- 
ically correlated and muticonfiguration self-consistent field (MCSCF) methods. 
Originally this was performed by computing the AO integrals, writing them to disk, 
and then processing them in a series of one-index transformations and sorts - an 
input/output (I/O) intensive procedure. When disk space is limited and/or when the 
I/O rate is poor relative to processor speed, an alternative direc t  algorithm may be 
employed. In analogy to direct SCF, a direct transformation will recompute the 
AO integrals as required rather than retrieve them from disk. A number of different 
direct transformation strategies may be considered [1], some of which have been 
implemented in the framework of second-order perturbation theory (MP2) [2-6]. 

On massively parallel processors (MPPs) the ratio of compute to I/O perfor- 
mance has traditionally been very large and, on a given machine, tends to increase 
with the number of processors being used. Thus, it would appear more profitable to 
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investigate parallelization of a direct rather than conventional transformation. The 
earlier parallel four-index transformations [7-11] used either integrals stored on 
disk or assumed that all AO integrals could be held in aggregate memory. Clearly, 
for a practical code there is a need to address the issues of memory limitation and 
direct AO integral generation in the transformation. Several recent parallel algo- 
rithms reported I-5, 6, 12] have used a direct method. 

In this paper we discuss possible parallel direct integral transformation strat- 
egies and implement two viable algorithms. Specific attention is given to the special 
case where only a subset of the transformed two-electron integrals containing at 
least two "active orbital" indices are produced. The range of the active orbital 
indices is assumed to be much smaller than the range of the full MO indices, 
although it could obviously be expanded to cover all MO indices and thereby 
produce a full list of transformed integrals. The rationale for working within this 
restriction derives from the fact that many correlated methods either do not require 
other classes of transformed integrals, e.g., MP2 or the complete active space 
self-consistent-field method (CASSCF), or contributions from other classes of 
integrals can be evaluated directly from AO integrals, e.g., the single and double- 
excitation coupled-cluster method (CCSD) [13, 14]. 

In the following section we briefly review direct integral transformations noting 
potential problems in migrating these algorithms to MPPs. More detailed dis- 
cussion concerning limited integral transformations has been given in several 
earlier articles [1, 15, 16]. In Sect. 3 we consider in detail aspects associated with 
parallelization, highlighting potential communication bottlenecks and developing 
a rudimentary performance model for our two parallel algorithms. The MP2 
method, which is a special case of a limited direct integral transformation, is 
covered in Sect. 4. Section 5 presents observed parallel performance for two 
different test molecules. 

2 Direct integral transformations 

In this work, only the subset of integrals which contain at least two active orbital 
indices will be considered. The active orbitals have the usual definition for MCSCF 
but are defined as the correlated occupied orbitals for MP2 and other dynamically 
correlated methods. This subset of integrals are grouped into Coulomb (jij) and 
exchange (K i J) operator matrices, 

J~pJq = [ p q l i j ] ,  (1) 

K ~  = [ p i l q j ] ,  (2) 

where the integrals are written in Mulliken notation, i , j ,  . . .  denote active orbital 
indices and p, q, ... arbitrary MO indices. Using N as the number of basis 
functions and n as the number of active orbitals, typically n ~ N. For the Coulomb 
integrals, transformation from the AO to MO basis requires the evaluation of the 
following fourfold summation: 

[-Pql/J] = ~ C~ C# C~ C~ I-#vl2a], (3) 
liv2a 

where the Greek indices,/t, v ... denote AOs and C is the matrix of MO coeffi- 
cients. The expression for the exchange integrals, [p i [q j ] ,  is identical except for 
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interchanges of indices. The transformation is most efficienctly performed as four 
consecutive quarter transformations [17]: 

[~v lAY] = ~ C~2 [~vlA~], (4) 
£r 

[~vl/j] = ~ Ck[~vlAj], (5) 
2 

[/~q[/j] = ~ C~ [/~vl/j], (6) 
v 

[pql/j] = ~ CP[l~qlij], (7) 

since the total computational cost will then scale as the fifth power of the number 
of basis functions (N s) rather than N 8 which might be implied from Eq. (3). An 
optimal integral transformation will seek to minimize the prefactor in front of N s, 
while maintaining reasonable memory and disk requirements. In most implemen- 
tations, the transformation is divided into two halves; performing transformations 
(4) and (5) initially and then transformations (6) and (7) separated by an intervening 
supermatrix transposition, i.e., a sort of the integrals from all i,j for fixed (#v) to all 
#, v for fixed (ij). Since the latter half transformation is trivially effected after the 
transposition, most of our attention will be directed toward optimizing the first half 
transformation and transposition. As suggested by the order of Eq. (4)-(7), for the 
limited transformation to J and K it is advantageous to transform to the active 
MO indices in the first and second quarter transformations. Since n ~ N, this 
ordering significantly reduces the size of the intermediate quantities and therefore 
the cost of subsequent transformation steps. 

In a conventional disk-based transformation, there is a considerable storage 
advantage to be gained by using a transformation algorithm which works from 
a minimal list of AO integrals. In other words, both the overlap ([#v[2o] = [/~vl~2]) 
and supermatrix ([pvl2a] = [2al#v]) symmetry of an integral is exploited. Obvi- 
ously, this is also an advantage in a direct scheme as it eliminates redundant 
computation of integrals. However, since the evaluation of the AO integrals scales 
as N 4, while the transformation scales as N 5, in the limit of a very large basis the 
computation of redundant integrals may not be significant. Furthermore, exploit- 
ing the full permutational symmetry may inhibit parallelism and an algorithm with 
some redundant AO integral computation may scale better in practice. 

A scheme which does compute J and K given a minimal list of AO integrals has 
been outlined by Werner and Meyer [15]. This algorithm is particularly efficient on 
a single processor, but relies on the availability of sufficient memory to store J, K 
and a temporary array of dimension nN 2. For J and K this assumption is generally 
justified as it is often assumed in subsequent correlated calculations; the main 
exception is the direct MP2 algorithm where some paging of K is usually imple- 
mented. The temporary array, however, is more problematic; its size means that on 
most MPPs it cannot be replicated in local memory on each processor but must be 
distributed. Repeated zeroing and subsequent accumulation of data into this array 
implies some degree of synchronization between the processors using it and, 
consequently, a potential load balancing problem. In view of this difficulty and the 
inability to implement paging into the computation of K this algorithm is probably 
not ideal for an MPP. 
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P >  

P >  

P >  

P >  

create and zero J and K global arrays 

synchronize 

do p =  I,n.,h 

d o v = l , #  

if ((/*v) is my task) then 

do 2 = 1, nsh 

d o a = l ,  2 

compute AO integral block [/*v 12a] 

[/*v[2i] = [~*viAl] + ~,,,, C~[/*v[).tr] 

[/*v[ai] = [/*vla/] + ~z  C~ [/*v[2a] 

end 

end 

[~*viii] = E~ C{ [/*v[U] 
scatter [/*vlji] into global J array 

do i =  1, n 

do j = 1, i 

[/*JIG/] = ~ C~ [pvlGi] 
[vj](i] = ~,~, C~ [priG/] 

accumulate [/*J[GO and [v.jl(i ] into global K array 

end 

end 

get my next task 

end 

end 

end 

P > synchronize 

do i = 1, n 

do j = 1, i 

P > if (j~s in local memory) 
~j _ p q ij Jp~ - ~'~v C, C~ J~  

P > end 

P > if (K ij in local memory) 

C~ K,~ 

P > end 

end 

end 

P > synchronize 

Parallel constructs indicated by P > 

Fig. I. Twofold redundant parallel direct transformation algorithm for J and K 

An  a l t e r n a t i v e  a l g o r i t h m  wi th  sma l l e r  m e m o r y  r e q u i r e m e n t s  for  t e m p o r a r y  
ar rays ,  a n d  w h i c h  is a l so  a m e n a b l e  to  p a g i n g  of  J a n d  K can  be  p r o d u c e d  by n o t  
e x p l o i t i n g  t h e  s u p e r m a t r i x  s y m m e t r y  o f  the  in tegra ls ,  i.e., the  in tegra l s  a re  c o m -  
p u t e d  twice.  T h i s  scheme,  as i m p l e m e n t e d  in a d i rec t  con tex t ,  is g iven  in Fig.  1. 
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Essentially, it is a generalization of the direct MP2 algorithm of Head-Gordon 
et al. [3, 4] to compute J in addition to K with a redefinition of the virtual orbital 
range to include all MO indices. For optimal AO integral generation, the outer 
four loops are over shell indices, where a shell consists of all angular components 
for a given radial function and there are a total of nsh shells. Using S ~ to denote the 
number of components for shell/~, the integrals are generated in blocks of dimen- 
sion s~s~s~s ~. Partial contributions to the first-quarter integral transformation are 
evaluated as the integral shell blocks are computed, accumulating data into 
a temporary array of size S2nN, where S is the maximum shell size. For shells with 
a small number of angular components the performance of this progressive trans- 
formation may be relatively poor and, subject to available memory, several integral 
shell blocks should be grouped together before effecting a partial contribution to 
the first index transformation. 

Completion of the loops over 2 and tr (Fig. 1) yield an intermediate array of 
integrals, [sUshi (i] where the dummy index ( spans all AO indices. At this point, the 
Coulomb half-transformed integrals, [sUsVlji], can readily be generated with 
a single-matrix multiplication. However, only a partial contribution to the half- 
transformed exchange integrals, [sUj[(f] and [s~j[ (i], can be effected. These integral 
quantities are not complete until the end of the/~ and v loops. Note that the ( index 
can be transformed immediately to MO indices although there is no computational 
gain unless the number of MOs is substantially less than the size of the AO basis 
(e.g., MP2). 

The third and fourth indices of J and K are transformed using a pair of matrix 
multiplications positioned after all loops defining the integral generation are 
complete. As mentioned earlier, this requires J and K to be arranged in memory 
such that for a given MO pair index (ij) all/t, v are available, rather than the fixed 
(/~v) all i,j ordering produced after the second index transformation. Either an 
explicit supermatrix transposition must be performed prior to the final transforma- 
tions or an implicit transposition performed by scattering the blocks of data as they 
are produced after the second index transformation into the correct final ordering. 
For J either strategy is suitable, however, for K an implicit transposition implies 
that inside the loop over # and v a contribution to K of size n2N must be scattered 
(and accumulated) in memory. For this implicit transposition the data traffic scales 
as nsh n2N 2, whereas for an explicit transposition it scales as n2N 2. In terms of data 
movement the explicit transposition is preferred, however, the implicit transposi- 
tion has the advantage of smaller memory requirements since the half-transformed 
integral blocks are accumulated directly into their final destination. 

3 Parallel direct transformations 

For simplification we will initially assume that the number of Coulomb and 
exchange integrals, O (n 2 N2), is sufficiently small such that they can be held within 
the global memory of the parallel machine. Given that there are currently MPPs 
with total memory capacities in excess of 20 GB, this will be true for even quite 
large systems. However, in the next section and in reference to MP2, we show how 
paging can trivially be incorporated into our parallel algorithm. It is important, 
at this stage, to distinguish between data stored in global memory from that stored 
in local memory; on a distributed memory, architecture access to global data is 
considerably slower owing to the interprocessor communication involved. For 
virtual shared-memory architectures, e.g., Cray T3D and KSR, where access to 
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global data may be implemented by the operating system or hardware, a similar 
difference in memory latencies also applied. Furthermore, while the size of the 
global memory grows with the number of processors, the local memory capacity is 
fixed and, hence, represents a more stringent constraint since it is independent of 
the number of processors employed. Therefore, the primary design goals, as far as 
the memory issues are concerned, are to minimize the number of global memory 
transactions and to use the smallest amount of local memory possible. The J and 
K operators are distributed in global memory in a matrix structure where a proces- 
sor holds entire j i j  or K ij matrices for one or more index pairs (/j). Although this 
distribution is advantageous given the generation and use of J and K, it does imply 
a minimum of O(N z) memory per processor. This local memory assumption will 
underly our parallelization scheme, and enables us to replicate the MO coefficient 
matrix on each processor. 

Assuming that J and K are stored in a global shared-memory region, paralleliz- 
ation of the direct four-index transformation given above is straightforward as 
shown by Fig. 1. The compound shell index (pv) designates a parallel task which 
involves the generation of half-transformed integrals for fixed (/~v), i.e., all computa- 
tions inside the outer two loops. This yields O (n~zh) parallelism which is likely to be 
sufficient for most platforms of interest. In a static load distribution, the list of (pv) 
tasks would be evenly divided between the processors from the outset. However, 
the time spent on different tasks varies widely depending on integral sparsity and 
nature of the basis functions that constitute shells p and v. Therefore, these tasks 
are allocated dynamically using a shared counter which maintains optimal load 
balancing. As noted earlier, starting the third index transformation requires com- 
pletion of the summation inherent in the second integral transformation, and thus 
is necessary to synchronize the processors outside of the (#v) loops. To minimize 
load-balancing problems associated with this synchronization, and in analogy to 
parallel direct SCF codes, it is best to process the task list in descending order of 
expected processing time. For example, the shells may be reordered in descending 
shell length since the tasks with high angular momentum shells are more computa- 
tionally demanding. Finally, the third and fourth index transformations are par- 
allelized according to locality of the distributed J and K. The above parallel 
algorithm is attractive since it is fully load balanced and only requires three 
synchronizations: one to ensure that J and K are initialized to zero, one after all 
AO integral generation is complete and before the third index transformation, and 
one after the fourth index transformation. Only the second synchronization has 
any substantial effect on the parallel efficiency since it is MIMD at this point and 
processors may have to wait for other processors to finish their allotted tasks. The 
first and third synchronizations have little or no effect since all processors are 
already nearly synchronized at these stages. 

The principal local memory requirements for the above algorithm are 

1. An array of size S 4, which is used to hold the AO integrals as they are generated. 
For a basis containing Cartesian f functions this will be of size 104. 
2. A temporary array of size S 2 nN, used to hold the quarter-transformed integrals, 
[s~ sV[~i]. 
3. The MO coefficient matrix, and the equivalent of 1-2 other matrices of the same 
size (N 2) which are used as temporary storage. 

The last two requirements are likely to limit the system size which can be treated on 
a given machine. Taking 64MB of available memory per processor as an example, 
we anticipate being able to perform calculations in the region of 800 basis functions. 
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The parallelization scheme outlined above does, however, rely on the avail- 
ability of a large global shared-memory region to store J and K. Recognizing the 
general utility of such a concept, Nieplocha et al. have devised a set of Global 
Array (GA) tools [18] that facilitate the manipulation of global data objects on 
distributed and virtual shared-memory architectures. These tools incorporate 
the simplicity of the shared-memory model, obviating the need for explicit 
message passing, while maintaining the distinction between global and local 
memory. This concept of a hierarchical memory structure, or non-uniform memory 
access (NUMA), already exists on many MPPs, but the GA tools provide a much 
greater degree of portability. The utility of the GA tools has already been demon- 
strated in a variety of computational chemistry applications on a number of 
platforms [19]. 

Using the GA tools to store J and K and the parallelization scheme outlined 
above, the critical issue becomes the movement of local data into the formally 
distributed J and K data objects. This occurs when the half-transformed integrals 
are placed into the final arrays pending the third index transformation. Since there 
is a need to move data to remote processors, this data movement can be combined 
with the supermatrix transposition required before the third and fourth index 
transformation. This implicit transposition is compatible with dynamic load bal- 
ancing and has the advantage of overlapping the communication with the asso- 
ciated AO integral generation and transformation. The data movement for J scales 
as nZN 2. However, for K the parallelization scheme implies that different proces- 
sors will sum different contributions into the same element of the half-transformed 
K matrix. In this case the communication scales as nshnZN 2, which is identical to 
the serial implicit transposition of K discussed earlier. 

It is worthwhile noting that the above algorithm and the V1 algorithm of 
Nielsen and Seidl [6] derive from identical sequential algorithms. However, 
the resultant parallel algorithms are quite different, especially in the definition of 
parallel tasks. The differences perhaps most effectively demonstrate the advantages 
of using a shared-memory programming model. The earlier algorithm requires task 
synchronization and global communications with a fine task granularity while in 
this work the algorithm has a much higher degree of process asynchrony and a low 
volume of point-to-point communications with a coarser task granularity. 

The overall scaling of the above algorithm will depend on the communication 
capability of the machine being used and the details of the calculation undertaken. 
The loop ordering #v2a (varying slowest to fastest) is optimal for J, but problem- 
atic for K as it results in O (N 5) data movement. The alternative is also to generate 
the integrals in the optimal order for the exchange transformation. This yields a 
sixfold redundancy in the AO integrals, with [#2[va] and [p~]v2] computed 
together with [#v[2o-]. In this case, the data movement for K scales as O ( N  4) since 
it avoids partial summations in the second index transformation. This algorithm, 
which is shown in Fig. 2, is labeled as sixfold while the earlier algorithm in Fig. 1 
will be referred to as twofold. In Fig. 2, the generation of J and K has been 
coalesced into a single structure for brevity; however, it is actually implemented as 
two distinct loop structures since the J and K intermediates are independent. This 
has the advantage of reusing local memory, doubling the available parallelism, and 
reducing task sizes. The sixfold algorithm is similar to that proposed by Saebo and 
Alml~f [2], although since they only compute K they actually have a fourfold 
redundancy in the integral generation. In addition to the extra integral computa- 
tional work, a further disadvantage of the sixfold algorithm is that Schwarz 
screening for K cannot exploit (/iv) sparsity. 
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create and zero J and K global arrays 

P > synchronize 

do / t=l ,n~h 
do v =  1,/t 

P > if ((/~v) is my task) then 

do ). = 1, nsh 
d o e = l ,  2 

compute AO integral block [/~vl2a] 

[l~vl2i'l = I-/~v12i] + ~ ,  C~[~tvt).a] 
[~vlai] = [Itvltri] + ~a C~ [/tvl2a ] 

compute AO integral block [g21va] and [pair2 ] 

[~t2lvi] = [tt2lvi'l + E ,  C~[/~2lva] 

I-/laluiJ = [/~alvi] + ~ c~[#alv),] 
end 

end 

[-~vlji] = E~ Ci[~vlU] 
scatter [,uvlji] into global J array 

[l~Jl vi] = ~.~ C i [it( 1 vil 
scatter [#jrvi] into global K array 

P > get my next task 

P > end 

end 
end 

P > synchronize 

d o i = l , n  
d o j =  1, i 

P > if (J~ in local memory) 
"" p q iV J'r~ = ~ , vC ,  C .J , .  

P > end 
P > if (K ~j in local memory) 

K~.~= P q ~J "" ~ ,  C~.C.K,v 
P > end 

end 

end 
P > synchronize 

Parallel constructs indicated by P > 

Fig. 2. Sixfold redundant parallel direct transformation algorithm for J and K 

A r e a s o n a b l e  u n d e r s t a n d i n g  of  the  c o m p a r a t i v e  p e r f o r m a n c e  of ou r  two a lgo-  
r i t hms  can  be o b t a i n e d  f rom a r u d i m e n t a r y  model .  F o r  clari ty,  we cons ide r  on ly  
the  g e n e r a t i o n  of K,  since i t  is the  m o r e  p r o b l e m a t i c  c o m p o n e n t ,  a n d  i g n o r e  
in tegra l  sparsi ty .  Let  c~ d e n o t e  the  t ime  per  f loa t ing  p o i n t  opera t ion ,  fl the average  
t i m e  per  in teg ra l  gene ra t i on ,  a n d  g.~ N /nsh  the  average  shell length.  F o r  the  twofold  
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algorithm, the computation time for each task is given by 

Tcompute = g2 NZfl + 2N2nct + 2Nn2~ . (8) 

The first term is the cost of generating a block of s2N2 AO integrals using 
overlap symmetry and the second and third terms are matrix multiplication cost of 
the first and second-quarter transformations. Multiplying Eq. (8) by the number 
of tasks, ~ N 2 / 2 g  2, recovers the total computation time which scales as 
O(N4fl + N4no~ + Nan2~). In each task, 2gNn 2 data is communicated with an 
aggregate volume of O(n2N2nsh). The transposition is divided into messages of 
length gN for each (ij) and, using to and tl to denote the latency and bandwidth, 
respectively, to a first approximation the communication time per task is 

2x Tcomm = n 2 [to + gNt l] .  (9) 

We note that the above equation assumes network contention is negligible, which 
is unlikely to be true given the high volume of data. To incorporate such contention 
into our model would be difficult and well beyond the scope of this work. It suffices 
to say that communication contention will manifest itself by an apparent increase 
in latency and decrease in bandwidth, and is likely to be more noticeable the 
greater the number of processors used. 

In a similar manner to that outlined above, the computation and communica- 
tion times per task for the K component of the sixfold algorithm is given by 

6x __ ~2 Tcomput e -- [NZfl + 2N2ncz + 2Nn2~], (lo) 
6x T . . . .  "~- n2[to + §2tl]. (11) 

In comparison to the twofold algorithm the compute time is identical, except for 
a factor of 2 in the integral generation component (this increases to a factor of 3 if 
J is also computed). The aggregate communication requirement is now, however, 
of O (n 2 N2). 

4 Parallel direct MP2 

The closed-shell MP2 correlation energy is given by 

E(2) "= Z [ia[jb](2[ia[jb] - [ib[ja]) 

i j ab  ~i "~- ~'j - -  F'a - -  ~b 

(12) 

= ~ eij, (13) 
i > j  

where indices i,j and a, b denote occupied and virtual canonical SCF orbitals 
respectively, e i and SCF orbital energy and e~j a pair correlation energy. Only the 
K ij operator integrals are required, and since the method is non-iterative E (2) c a n  
be accumulated in a piecemeal fashion by, at any time, generating K for a unique 
subset of (ij) pairs. This multipassing approach [3, 4] significantly extends the size 
of systems which can be treated within a limited amount of memory, but at the 
expense of repeated computation of the AO integrals. The blocking loop for K is 
obtained by limiting the range of the first index transformation to a subrange of the 
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occupied orbitals. This ensures that the N 5 work associated with the transforma- 
tion remains constant, and only the N* work associated with integral computation 
increases due to multipassing. A minimum global memory requirement of nocc n~ir is 
obtained when only one occupied orbital is treated in a given pass of the integrals, 
in which case there are noco passes of the integrals. 

Adapting the twofold or sixfold algorithms to perform paged MP2 calculations 
requires little extra work; the J matrix is not computed, a blocking factor is placed 
around the entire code to determine the number of occupied orbitals treated in 
each batch, and some new code is added to contract a subrange of K into the MP2 
energy. In addition, however, and only for the twofold redundant algorithm, it may 
be advantageous to transform ~ in Fig. 1 to the virtual orbital basis prior to 
scattering and accumulating the partially transformed K on remote processors; 
since nvir < N this reduces the storage requirements for K and also the amount of 
data which is communicated. For the sixfold redundant algorithm (which actually 
has a fourfold redundancy when only K is computed) this is not possible. 

As the global memory of a parallel machine is proportional to the number of 
processors used, increasing this can reduce the number of required passes over the 
AO integrals. This fact was earlier recognized and exploited by M~trquez and 
Dupuis [5]. Coupled with the increased performance available from more proces- 
sors this results in super-linear speedup, at least until multipassing of the integrals 
becomes unnecessary. An estimate of the twofold computation time is given by 

/t/pass + T 
tcomp - -  , (14) 

P 

where p is the number of processors, I and T are the single-node AO integral 
evaluation and transformation times, respectively, and npa~s is the number of 
integral passes which in turn is a function of p, the available memory per processor 
and the size of K. Deviation from this estimate will be primarily due to the effects of 
communication and how the communication capability of the machine scales with 
an increasing number of processors. 

5 Results and discussions 

All calculations reported in this work were performed using the Intel Touchstone 
Delta. This machine consists of 512 i860 processors each with 16 MB of memory 
and linked in a 16 x 32 mesh topology. The standard programming model is 
message passing. The shared-memory facility provided by the GA tools on the 
Delta is implemented via interrupt handlers. A similar concept was used in early 
parallel CCSD [20] calculations, however, that work required very detailed pro- 
gramming of the interrupt handlers and was not readily portable. 

As a first test case we have used butane in a cc-p VDZ basis [21] with 60 shells 
and, using Cartesian polarization functions, 110 basis functions, Both J and 
K operators were produced with the 17 occupied orbitals defining the active 
orbitals. With this basis and ratio of active to total orbitals, we consider this case to 
be somewhat representative of the transformation requirements typical of MCSCF 
or highly correlated calculations. The resulting elapsed times for both the twofold 
and sixfold algorithms are plotted as a function of the total number of processes 
using a lOglo/loglo scale in Fig. 3. Perfect scaling is given by a straight line of unit 
slope. In scaling from 8 to 256 processors, parallel efficiencies of 69% and 85% are 



P a r a l l e l  d i r e c t  f o u r - i n d e x  t r a n s f o r m a t i o n s  

1oooo 

1000 

100 

+ 2x Total 

,-.,r... 6x Total 

...... - - 2x Integrals 

- '""v. ....... . ....... 2x Transform 
"'"'""v, 

"'-.... - -  2x Synch 

10 100 1000 
Number of Processors 

327 
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observed for the twofold and sixfold algorithms, respectively. Despite, however, the 
greater parallel efficiency of the sixfold algorithm, the twofold algorithm is always 
considerably faster. For comparison, on 32 processors, the parallel direct SCF 
calculation converged in 815 s with approximately 47 s per Fock matrix construc- 
tion while the four-index transformation was completed in 201 s. 

To analyze the performance further, the total elapsed time has been broken 
down into AO integral generation, transformation and synchronization times by 
placing timing calls around the relevant sections of the code. Due to dynamic task 
allocation, the ratio of these times will vary from processor to processor. In Fig. 
3 we also plot average component times for the twofold butane test case. This graph 
shows that for low orders of parallelism, the AO integral cost is much more 
significant than either the transformation or communication components. It is also 
evident that while the integral generation and transformation times scale linearly 
with the number of processors, the synchronization time progressively increases. It 
is important to realize that linear scaling of the average integral generation and 
transformation times implies only that the corresponding total times do not 
increase due to some overhead associated with the parallelism. This could occur 
if, for example, the communications were a bottleneck. On the other hand, the 
increase in synchronization time implies that it is becoming progressively harder to 
load balance the work across the different processors. Closer inspection of this 
example reveals that there is a total of 1476 tasks which take, on average, 4.3 s to 
complete, but span a range of 1.2-29.8 s. Given the number of tasks and distribu- 
tion in magnitude, it is not surprising that the effects of task granularity become 
manifest beyond 200 processors. 

As our second test case we perform a direct MP2 energy calculation on 
morphine (Fig. 4) using a 6-31G basis. There were 54 correlated valence orbitals 
and with 101 shells and 227 functions in the AO basis. For comparison, the parallel 
direct SCF calculation converged in 1668 s with approximately 100 s per Fock 
matrix construction using 256 processors. In Table 1 we present the total elapsed 
time and number of AO integral passes required for a various number of proces- 
sors. Comparing initially the twofold and sixfold algorithms, we find that for small 
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Fig. 4. Morphine (C17H19No3) 

Table 1. Multipass total times for morphine: twofold and sixfold algorithms in seconds 

Nodes P a s s e s  Twofold Sixfold Nodes P a s s e s  Twofold Six fold 

32 7 3656.5 7459.0 160 2 420.3 562.0 
40 5 2650.9 5217.0 176 2 377.4 515.4 
48 5 1994.5 3735.5 192 2 369.7 475.8 
56 4 1510.9 2647.7 200 1 274.9 276.8 
64 4 1329.7 2324.5 224 1 250.4 248.4 
72 3 1024.4 1606.0 256 1 227.9 219.7 
80 3 927.1 1461.9 288 1 203.5 196.3 
96 3 780.6 1244.2 320 1 186.6 176.1 

112 2 558.7 768.6 384 1 167.0 150.2 
128 2 514.6 682.3 448 1 151.1 129.9 
144 2 462.4 617.6 512 1 144.6 116.6 

processor  count  the lower integral evaluation cost  makes the twofold algori thm 
substantially faster. As the numbers  of  processors increase, however, the smaller 
communica t ions  in the sixfold algori thm yields superior performance beyond  
about  200 processors and by 512 processors it is some 20% faster. An estimate of 
the relative compute  to communica t ion  ratio for the two algorithms and this test 
case can be obtained from the performance model  outline in Eqs. (8-11). On  the 
Intel Touchs tone  Delta  to is nominal ly 300 Its with the point- to-point  bandwidth,  
t l ,  equal to 1 Its per word. Empirical  estimates give fl = 1.57 x 10 -5 s per integral 
and c~ = 7.8 x 10 -8  s per matrix multiply operation. The ratio of computa t ion  to 
communica t ion  is therefore approximately  2.0 and 7.7 for the twofold and sixfold 
algorithms, respectively. 

Predicting a priori the crossover point  where the sixfold redundant  algori thm 
becomes more  favorable is by no means simple since it is a complex function of  the 
system being studied, the basis set used, the ratio of  active to other  orbitals, and the 
machine on which the calculation is performed. Given the results for butane and 
the fact that  even on 512 processors the sixfold redundant  algori thm is only 
marginal ly faster for morphine,  we would advocate  initially using the twofold 
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redundant algorithm on the Intel Delta. On other machines, especially those with 
a poorer communication network, the sixfold redundant algorithm may be more 
advantageous. In general, the availability of both alternatives is desirable with the 
user directing which algorithm is used based on previous experience. 

For the morphine example a single pass of the integrals requires a minimum of 
200 processors of the Delta. Using multipassing, however, the same calculation has 
been performed on only 32 processors and could probably be performed on 
8 processors if it were not for the excessively large elapsed time. To highlight the 
combined effect of increased global memory and compute power obtained as 
processors are added we plot, in Fig. 5 and for the twofold algorithm, both linear 
speedup and the observed speedup relative to the 32 processor time. To compari- 
son shows that at the maximum 512 nodes, the observed speedup is over 1.5 times 
better than linear. To try and isolate the effect of increased memory from that of 
increased compute power we have also plotted, in Fig. 5, the speedup predicted 
from Eq. (14) and the number of integral passes required for a given number of 
processors. Agreement between the model and observed results is relatively good 
up to about 128 processors, after which the predicted speedup becomes progress- 
ively less accurate. This, however, is to be expected given that the model ignores 
communications and issues associated with load imbalance. Within a region 
corresponding to a fixed number of integral evaluations linearity implies a scalable 
algorithm. This is observed, with a minor exception above about 400 processors. 
For optimal use of machine cycles this calculation should be run on the minimum 
number of processors required to allow a single pass of the integrals, viz., 200. 
Beyond this the algorithm can scale at best linearly, but in practice on going from 
200 to 512 processors the parallel efficiencies of the twofold and sixfold algorithms 
are 74% and 92%, respectively. 

Finally, it is instructive to note the differences between the butane and mor- 
phine test cases. The former consisted of a small number of active orbitals with 
a relatively large basis set with high angular momentum functions. Using 256 
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processors, the AO integral generation required 25.9 s per node from a total time of 
35.2 s. The communication cost is proportionally insignificant and the deviation 
from perfect scalability originates only from insufficient parallelism associated with 
this small test case. On the other hand, morphine with a 6-31G basis set required 
53.3 s for the AO integral generation from a total of 226.9 s for the equivalent run. 
In this case, the volume of data communicated is comparatively large and, as 
a consequence, scalability is now limited by communication contention rather than 
task granularity. 

6 Conclusions 

This article addresses several issues associated with adapting a direct four-index 
transformation to massively parallel architectures. Two algorithms, which differ in 
the number  of times they recompute the two-electron integrals have been devised, 
implemented, and tested on two quite different molecules. As expected both 
algorithms exhibit high levels of parallelism showing reasonable efficiency even 
on 512 processors. The comparative performance of the two algorithms depends 
greatly on the system under study, the number of processors used, and the 
communication capabilities of the underlying hardware. Thus, the availability of 
both alternatives within one package is advantageous. 

The availability of a shared-memory model, and implementation of this within 
the Global Array tools [-19] has greatly simplified the work performed here. 
Furthermore,  these tools have allowed us to use efficiently the large global memory  
available on MPPs  and thereby achieve superlinear speedup for the direct MP2 
application. Such superlinear speedups are likely to be equally possible for other 
quantum chemistry applications that, like direct MP2, are driven at least in part  by 
available memory.  
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